University of Alberta Some Inequalities in Convex Geometry

نویسنده

  • Steven Taschuk
چکیده

We present some inequalities in convex geometry falling under the broad theme of quantifying complexity, or deviation from particularly pleasant geometric conditions: we give an upper bound for the Banach–Mazur distance between an origin-symmetric convex body and the n-dimensional cube which improves known bounds when n ≥ 3 and is “small”; we give the best known upper and lower bounds (for high dimensions) for the maximum number of points needed to hit every member of an intersecting family of positive homothets (or translates) of a convex body, a number which quantifies the complexity of the family’s intersections; we give an exact upper bound on the VC-dimension (a measure of combinatorial complexity) of families of positive homothets (or translates) of a convex body in the plane, and show that no such upper bound exists in any higher dimension; finally, we introduce a novel volumetric functional on convex bodies which quantifies deviation from central symmetry, establish the fundamental properties of this functional, and relate it to classical volumetric measures of symmetry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

(m1,m2)-AG-Convex Functions and Some New Inequalities

In this manuscript, we introduce concepts of (m1,m2)-logarithmically convex (AG-convex) functions and establish some Hermite-Hadamard type inequalities of these classes of functions.

متن کامل

On Fejér Type Inequalities for (η1,η2)-Convex Functions

In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...

متن کامل

Some extended Simpson-type inequalities and applications

‎In this paper‎, ‎we shall establish some extended Simpson-type inequalities‎ ‎for differentiable convex functions and differentiable concave functions‎ ‎which are connected with Hermite-Hadamard inequality‎. ‎Some error estimates‎ ‎for the midpoint‎, ‎trapezoidal and Simpson formula are also given‎.

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013